Introducing ?Medical Writing Tips of the Month?

J. Patrick Barron

CHEST 2006;129;506-507
DOI 10.1378/chest.129.3.506

The online version of this article, along with updated information and services can be found online on the World Wide Web at:
http://www.chestjournal.org/content/129/3/506.full.html
All three groups experienced similar complications and rates of improvement of symptoms, with no procedure demonstrating superiority. Performing a sham endoscopy procedure in an ELVRS study might be the most effective manner to create a meaningful control group. Second, an analysis of subsets in this study to identify the ideal technique or candidates for ELVRS seems premature.

Despite all of its promise, and all of our enthusiasm, we are not yet certain if ELVRS is truly effective. Indeed, a multicenter, randomized, controlled trial of another endobronchial valve for ELVRS is currently underway. Let us await the results of this trial before further efforts are made to identify the ideal candidate, device, or technique for ELVRS.

William W. Lunn, MD, FCCP
Houston, TX

REFERENCES
1 Mannino DM. Epidemiology and global impact of chronic obstructive pulmonary disease. Semin Respir Crit Care Med 2005; 26:204–210
4 Mannino DM. Chronic obstructive pulmonary disease: definition and epidemiology. Respir Care 2003; 48:1185–1191

Introducing “Medical Writing Tips of the Month”

A New Section in CHEST

“G
iven the importance of medical writing to the progress of civilization, one might expect the art to be widely cultivated and highly perfected. Such is not the case at all. Modern medical literature is some of the most vapid, obscure, tortuous, and unreadable material in print.”1 We would submit that the obtaining of information, especially clinical information, involving as it does the cooperation and rights of patients, carries with it the inherent ethical obligation to communicate the knowledge that can be derived therefrom with maximal impact.

In this issue of CHEST (see page 822),2 we introduce the first article of a new section, entitled “Medical Writing Tips of the Month.” The purpose of this new section of CHEST is to improve the ability of our potential authors to write in the most understandable and communicative manner possible and to enhance the understanding of our readers. As Dr. Richard Irwin noted in his recent editorials,3,4 the new focus and structure of CHEST includes a variety of new sections to educate our readers and to provide new areas of content.

To that end, we have recruited a group of highly experienced authors, editors, and biostatisticians to give us the benefit of their experience in a wide and, we believe, highly interesting range of topics concerning medical writing. Each month will bring you an article on a different topic. This should be of great interest and value not only to authors, but also to readers, enhancing the ability to critically appraise medical papers.

Articles in this section will essentially consist of two formats: one consisting of actual examples of poor communication (eg, “What is wrong with this . . . ?”), with suggestions for how they might be improved; and the other addressing concepts related to communications in the field of medicine, such as the “Uniform Requirements for the Submission of Manuscripts to Biomedical Journals” and publishing ethics. Please inform us of any topic that you particularly wish to be addressed, and we will try to include it on our scheduled menu.

This section is yet another aspect of the goal of CHEST to contribute to the area of education in the fields of pulmonary, critical care, and sleep medi-
Mixed vs Central Venous Oxygen Saturation May Be Not Numerically Equal, But Both Are Still Clinically Useful

Mixed venous oxygen saturation (S\(v_o\)2) in sepsis is commonly referred to as an end point of low impact on clinical decisions in sepsis patients because of the following common refrain: “S\(v_o\)2 is always increased in septic ICU patients.” However, there are fundamental principles that render this modality clinically useful when applying it to the supply-dependent phase of sepsis (i.e., global tissue hypoxia). The presence of global tissue hypoxia not only has pathologic significance in vitro,1 but there is a pathologic link among the clinical presence of global tissue hypoxia (i.e., low S\(v_o\)2 and cardiac index), the generation of inflammatory mediators, and mitochondrial impairment of oxygen utilization that is seen in septic ICU patients.2 Furthermore, identifying sudden episodes of supply dependency in septic ICU patients (i.e., sudden decreases in S\(v_o\)2) has diagnostic and prognostic significance.3 With this background, the rationale for using central venous oxygen (S\(v_o\)2) saturation as a surrogate for S\(v_o\)2 to detect and treat global tissue hypoxia in the most proximal phase of sepsis management (supply dependency) was the basis for its use in the Early Goal Directed Therapy in Severe Sepsis and Septic Shock Study (EGDT).4

Early hemodynamic assessment using physical examination, vital signs,5 central venous pressure,6 and urinary output7 fails to detect supply dependency or persistent global tissue hypoxia. Shock patients who are resuscitated to having normal vital signs continue to exhibit evidence of global tissue hypoxia (S\(v_o\)2 < 70% and increased lactate levels) and require additional resuscitation, as shown by Rady et al.6 Similar findings were confirmed in the EGDT study as 39.8% of the control group vs 5% of the EGDT group continued to have global tissue hypoxia after 6 h of resuscitation despite the fact that all patients attained the same vital sign goals (i.e., MAP, > 65 mm Hg; CVP, > 8 mm Hg; urine output, 0.5 mL/kg/h). These findings of global tissue hypoxia, or “cryptic shock,” in patients8 have prognostic significance as this state was associated with a 56.5% in-hospital mortality rate. The therapeutic significance was realized as the EGDT patients received early and more aggressive therapy with fluids, RBC transfusion, and inotropic agents.

The question of whether the S\(v_o\)2 is a numeric equivalent to S\(v_o\)2 has been examined in a number of studies,9–12 which continues to fuel this debate. These studies, including the trial by Chawla et al,11 have consistently shown that S\(v_o\)2 values are (on average) approximately 5% higher than S\(v_o\)2 values, which is likely secondary to the contributions of deoxygenated blood from the coronary sinus. Recognizing this minor, yet consistent, difference allows the clinician to make an accurate assessment of global tissue hypoxia. Furthermore, the clinical utility of an end point of resuscitation is determined by whether it changes clinical practice, morbidity, and mortality in a cohort of patients under the rigors of an appropriately designed clinical trial. In other words, has this end point been calibrated to have clinical utility in the setting in which it is to be used? This was done with S\(v_o\)2 in the EGDT study,4 in which the range of S\(v_o\)2 values was 48.6 to 49.2%, with lactate levels of 6.9 to 7.7 mmol/L indicating significant supply dependency. Using the finding from Chawla et al,11 the S\(v_o\)2 values would be extrapolated to 43 to 45%. Thus, irrespective of whether the S\(v_o\)2 value equals the S\(v_o\)2 value, the presence of a low S\(v_o\)2 level in patients with early sepsis portends increased morbidity and mortality, and correcting this value according to a consensus-derived algorithm13 improves morbidity and mortality. It should be further noted that, in this well-designed study by Chawla et al,11 the majority of the...
Introducing "Medical Writing Tips of the Month?"

J. Patrick Barron

Chest 2006;129; 506-507
DOI 10.1378/chest.129.3.506

This information is current as of March 26, 2009

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>Updated Information and services, including high-resolution figures, can be found at: http://www.chestjournal.org/content/129/3/506.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 3 articles, 3 of which can be accessed free at: http://www.chestjournal.org/content/129/3/506.full.html#ref-list-1</td>
</tr>
<tr>
<td>Citations</td>
<td>This article has been cited by 3 HighWire-hosted articles: http://www.chestjournal.org/content/129/3/506.full.html#related-urls</td>
</tr>
<tr>
<td>Open Access</td>
<td>Freely available online through CHEST open access option</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.chestjournal.org/site/misc/reprints.xhtml</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://www.chestjournal.org/site/misc/reprints.xhtml</td>
</tr>
<tr>
<td>Email alerting service</td>
<td>Receive free email alerts when new articles cit this article. sign up in the box at the top right corner of the online article.</td>
</tr>
<tr>
<td>Images in PowerPoint format</td>
<td>Figures that appear in CHEST articles can be downloaded for teaching purposes in PowerPoint slide format. See any online article figure for directions.</td>
</tr>
</tbody>
</table>